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Abstract. A Gushel–Mukai manifold is a smooth Fano n-fold with Picard number 1, index
n´ 2, and degree 10. These manifolds were classified by Fano, Gushel, and Mukai a long time
ago; in particular, n P t3, 4, 5, 6u. We use Mukai’s description of these manifolds as (in most
cases) complete intersections in the Grassmannian Grp2, V5q to establish in Section 1 their main
cohomological properties.

With any Gushel–Mukai manifold, one can associate a 10-dimensional subspace A Ă
Ź3V6

which is Lagrangian for the conformal symplectic structure given by wedge product. This
simple construction establishes a close link between Gushel–Mukai manifolds and Eisenbud–
Popescu–Walter sextic hypersurfaces YA Ă PpV6q associated with A and their canonical double
covers rYA

// YA constructed by O’Grady, where rYA is a hyper-Kähler fourfold. We explain
in Section 2 the results of Debarre–Kuznetsov who used this link to describe the period maps
of Gushel–Mukai manifolds.

We examine in Section 3 the rationality question for Gushel–Mukai manifolds. In dimen-
sions 5 and 6, it is classical that they are all rational. In dimensions 3 and 4, the situation is
analogous to that of cubic hypersurfaces of the same dimensions: it is known (using the same
methods as for cubics) that general Gushel–Mukai threefolds are irrational (and one expects
them to all be irrational); some Gushel–Mukai fourfolds are rational but one expects that very
general Gushel–Mukai fourfolds are irrational, although no irrational Gushel–Mukai fourfolds
are known.

We explain in Section 4 various degenerations of Gushel–Mukai manifolds, the information
they provide in the smooth case, and, finally, Iliev’s ambitious (and still conjectural) plan to
describe the singular locus of the theta divisor of the intermediate Jacobian of any Gushel–
Mukai threefold, following the path that Voisin followed for quartic double solids.

In Section 5, we study the derived categories of coherent sheaves on Gushel–Mukai man-
ifolds. We construct semiorthogonal decompositions of these derived categories and study in
detail one of the components, called a Gushel–Mukai category. We discuss a duality theorem
relating the Gushel–Mukai categories of different Gushel–Mukai manifolds.
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1. Gushel–Mukai manifolds

The notation Un, Vn,Wn, . . . means a complex vector space of dimension n.

1.1. Definition.

Theorem 1.1 (Mukai). Any smooth Fano n-fold Xn with Picard number 1, index n ´ 2, and
degree 10 has dimension n P t3, 4, 5, 6u and can be obtained as follows:

‚ either n P t3, 4, 5u and Xn “ Grp2, V5qXPpWn`5qXQ Ă Pp
Ź

2V5q, where Q is a quadric
and Wn`5 Ă

Ź

2V5 is a vector subspace of dimension n` 5 (ordinary case);
‚ or Xn

// Grp2, V5qXPpWn`4q is a double cover branched along an Xn´1 (special case).

The following definition covers both cases.
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Definition 1.2. A Gushel–Mukai manifold of dimension n (for n P t3, 4, 5, 6u) is a smooth
dimensionally transverse intersection

Xn “ ConepGrp2, V5qq XPpWn`5q XQ Ă Pp
Ź

2V5 ‘Cq,

whereQ is a quadric hypersurface andWn`5 Ă C‘
Ź

2V5 is a linear subspace of dimension n`5.1

The projection γ : Xn
// Grp2, V5q Ă Pp

Ź

2V5q from the vertex of the cone is called the
Gushel morphism andXn is special or ordinary depending on whether the vertex lies inPpWn`5q

or not. In both cases, γ˚OGrp2,V5qp1q is a generator of PicpXnq.

1.2. Moduli spaces. We stick to the ordinary case for simplicity. In that case, we may
consider Wn`5 as a subspace of

Ź

2V5 and an ordinary Gushel–Mukai manifold of dimen-
sion n is a smooth complete intersection X “ Grp2, V5q X PpWn`5q X Q. The intersection
M :“ Grp2, V5q XPppWn`5q is also smooth.

Let W :“Wn`5. There is an isomorphism

q : V5
„
Ý // H0pPpW q,IM p2qq

v � //
`

w � // v ^ w ^ w
˘

so that V5 can be identified with the set of Plücker quadrics (those containing M) in W . We set

(1.1) V6 :“ H0pPpW q,IXp2qq » V5 ‘CQ.

Let Qpvq Ă PpW q be the quadric defined by qpvq, for any nonzero v P V6. This way, we recover

M “
č

vPV5

Qpvq and X “
č

vPV6

Qpvq

from the Gushel–Mukai data set pV6, V5,W, qq.

Pick v0 P V6 r V5 and consider the kernel A of the map
Ź

3V5 ‘W // W_

pξ, wq � //
`

w1 � // ξ ^ w1 ` qpv0qpw,w
1q
˘

.(1.2)

We use the decomposition
Ź

3pV5 ‘Cv0q »
Ź

3V5 ‘ p
Ź

2V5 b v0q to think of A as a subspace
of

Ź

3V6. It is straightforward to check that A is Lagrangian with respect to the conformal
symplectic structure on

Ź

3V6 given by exterior product.
We call such a triple pV6, V5 Ă V6, A Ă

Ź

3V6 Lagrangianq a Lagrangian data set.

Proposition 1.3. The subspace A contains no decomposable vectors, that is, no nonzero vectors
of the form v0 ^ v1 ^ v2 with v0, v1, v2 P V6.

1In Section 5, we will allow n “ 2, in which case X is a (smooth) K3 surface of degree 10.
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Instead of giving a complete proof (see [DK1] for more general statements and proofs), we just
highlight the link between decomposable vectors of A and singularities of X. Let v0^v1^v2 P A

be a decomposable vector. We can assume v1, v2 P V5; moreover, one can prove that v0 is not
in V5 by studying the ranks of forms in WK. Hence v1 ^ v2 P kerpqpv0qq, so Qpv0q is singular at
rv1 ^ v2s P PpW q hence so is X. One can prove the converse: any singularity of X comes from
the singularity of some quadric Qpv0q at a point rv1 ^ v2s.

The surprising fact that makes this construction useful is that the process is reversible: for
any Lagrangian data set pV6, V5, Aq such that A contains no decomposable vectors (this holds
for A general), one can define a (smooth) ordinary Gushel–Mukai manifold. In [DK3], the
authors combine the previous constructions and prove the following.

Theorem 1.4 (Debarre–Kuznetsov). There exists a coarse moduli space (in fact, a smooth
Deligne–Mumford stack) MGM

n for Gushel–Mukai manifolds of dimension n P t3, 4, 5, 6u, which
is quasi-projective and irreducible of dimension 25´p5´nqp6´nq{2. Moreover, ordinary (resp.
special) Gushel–Mukai manifolds are parametrized by an open (resp. closed) subspace MGM,ord

n

(resp. MGM,spe
n ) of MGM

n .

1.3. Hodge diamonds. With some work, the Hodge numbers of Gushel–Mukai manifolds can
be computed (see [DK1, Propositions 3.1 and 3.4]).

Proposition 1.5. The integral cohomology of a Gushel–Mukai manifold of dimension n is
torsion-free and its Hodge diamond is

pn “ 3q pn “ 4q pn “ 5q pn “ 6q

1
0 0

0 1 0
0 10 10 0

0 1 0
0 0

1

1
0 0

0 1 0
0 0 0 0

0 1 22 1 0
0 0 0 0

0 1 0
0 0

1

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 10 10 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 0 0 0 0

0 0 1 22 1 0 0
0 0 0 0 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

In particular, only the middle cohomology HnpX,Zq is interesting (in other degrees, it is
induced from the cohomology of Grp2, V5q by the Gushel map γ : X // Grp2, V5q). We define
the vanishing cohomology by

HnpX,Zqvan :“
`

γ˚HnpGrp2, V5q,Zq
˘K
Ă HnpX,Zq.

The Hodge numbers for the vanishing cohomology are therefore

pn “ 3q pn “ 4q pn “ 5q pn “ 6q

0 10 10 0 0 1 20 1 0 0 0 10 10 0 0 0 0 1 20 1 0 0
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1.4. Period maps. Let X be a Gushel–Mukai manifold of dimension n. When n P t3, 5u, the
Hodge structureHnpXq has level 1. There is a 10-dimensional principally polarized intermediate
Jacobian

JacpXq :“ HnpX,Cq{
`

Hpn`1q{2,pn´1q{2pXq `HnpX,Zq
˘

and a period map

℘n : MGM
n

// A10

rXs � // rJacpXqs.

Assume now n P t4, 6u. If n “ 4, the vanishing cohomology lattice pHnpX,Zqvan,!q is
isomorphic to the even lattice

Λ :“ E‘2
8 ‘

˜

0 1

1 0

¸‘2

‘

˜

2 0

0 2

¸

,

where E8 is the rank-8 positive definite even lattice. It has signature p20, 2q. If n “ 6, the vanish-
ing cohomology lattice is isomorphic to Λp´1q (the same lattice with the opposite intersection
form).

The manifold

Ω :“ tω P PpΛbCq | pω ¨ ωq “ 0 , pω ¨ ω̄q ă 0u

is a homogeneous space with two components, Ω` and Ω´, both isomorphic to the 20-dimensional
open complex manifold SO0p20, 2q{SOp20q ˆ SOp2q, a bounded symmetric domain of type IV.
The quotient

(1.3) D :“ rOpΛqzΩ`,

where rOpΛq is a subgroup of index 2, called the stable orthogonal group, of the isometry
group OpΛq of the lattice Λ, has the structure of an irreducible quasi-projective variety of
dimension 20. The domain D carries a nontrivial canonical involution rD associated with the
double cover D //OpΛqzΩ`.

A marking ofX is an isometry ψ : HnpX,Zqvan
„ // Λpp´1q

n
2 q. The Hodge structureHnpXqvan

is of K3 type and there is a period map

℘n : MGM
n

// D

rXs � // rψCpH
n{2`1,n{2´1pXqqs,

where ψ is any marking on X.
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Altogether, there are period maps

dim. dim.

22 MGM
3 ℘3

**
24 MGM

4 ℘4

**

A10 55

25 MGM
5

℘5

44

D 20

25 MGM
6

℘6

44

They are dominant when n is even. The kernel of the differentials of ℘n have the following
dimensions: 5 when n P t5, 6u, 4 when n “ 4, and 2 when n “ 3. This is also the dimension of
the fibers of ℘n.

The construction of special Gushel–Mukai manifolds produces maps MGM,ord
n

//MGM,spe
n`1 Ă

MGM
n`1 for n P t3, 4, 5u, which we see as rational maps qn : MGM

n 99K MGM
n`1. We will construct

in Sections 2.2, 2.3, and 2.4 maps pn : MGM
n

//D and a rational map a : D 99K A10 (see (2.4))
that fit into a diagram

MGM
3

p3

%%

q3
��

MGM
4 p4

++q4

��
D

a // A10

MGM
5

p5

33

q5
��

MGM
6

p6

99

with commutative triangles2 and such that ℘4 “ p4, ℘6 “ p6, and ℘3 “ a ˝ p3, ℘5 “ a ˝ p5.

2. Lagrangians and EPW sextics

2.1. EPW sextics. Let A Ă
Ź

3V6 be a (10-dimensional) subspace which is Lagrangian for
the conformal symplectic structure on

Ź

3V6 given by wedge product.

Definition 2.1. For any integer `, we set

(2.1) Y ě`A :“
 

rU1s P PpV6q | dim
`

AX pU1 ^
Ź

2V6q
˘

ě `
(

and
Y `
A :“ Y ě`A r Y ě``1

A .

2The vertical rational maps qn on the left cannot be composed: they are defined on the open subsets of
ordinary Gushel–Mukai manifolds but their images consist of special Gushel–Mukai manifolds.
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Theorem 2.2 (O’Grady). Let A Ă
Ź

3V6 be a Lagrangian subspace. If A contains no decom-
posable vectors,

(a) YA is an integral normal sextic hypersurface in PpV6q called an EPW sextic;
(b) Y ě2

A “ SingpYAq is an integral normal Cohen–Macaulay surface of degree 40;
(c) Y ě3

A “ SingpY ě2
A q is finite, and is empty for A general;

(d) Y ě4
A is empty.

We may also consider the orthogonal AK Ă
Ź

3V _6 . It is still Lagrangian and

(2.2) Y ě`
AK “ trU5s P PpV

_
6 q | dimpAX

Ź

3U5q ě `u.

The properties of EPW sextics that are of most interest come from the existence of a (finite)
canonical double cover fA : rYA // YA ([O2, Section 1.2]) with the following properties.

Theorem 2.3 (O’Grady). Let A Ă
Ź

3V6 be a Lagrangian subspace which contains no decom-
posable vectors and let YA Ă PpV6q be the associated EPW sextic.

(a) The double cover fA : rYA // YA is branched over the surface Y ě2
A and induces the uni-

versal cover of Y 1
A.

(b) The variety rYA is irreducible and normal, and its singular locus is the finite set f´1
A pY ě3

A q.
(c) When Y ě3

A is empty, rYA is a smooth hyper-Kähler fourfold which is a deformation of
the Hilbert square of a K3 surface.

Proof. Item (a) was proved in [O2, Proof of Theorem 4.15, p. 179], item (b) follows from
statement (3) in the introduction of [O2], and item (c) is [O1, Theorem 1.1(2)]. �

In [DK2], the authors generalized the construction of the double cover of Theorem 2.3 and
they defined another canonical double cover of the surface Y ě2

A which will be used in Section 2.4.

Theorem 2.4 (Debarre–Kuznetsov). Let A Ă
Ź

3V6 be a Lagrangian subspace which contains
no decomposable vectors and let YA Ă PpV6q be the associated EPW sextic. There exists a double
cover

πA : rY ě2
A

// Y ě2
A

branched over Y ě3
A , where the surface rY ě2

A is integral, normal, and smooth away from π´1
A pY

ě3
A q.

Proof. These constructions are explained in [DK2, Sections 3 and 4]. They are a bit technical but
the idea is that locally, isotropic degeneracy loci (such as Y ěkA , the locus where two families of
isotropic subspaces meet in dimension ě k) are quadratic degeneracy loci (loci where a family
of quadratic forms has rank ď k). When the rank is even, the latter have canonical double
coverings parametrizing connected components of the family of linear subspaces of maximal
dimension; these coverings are branched along the locus where the rank drops by 1 more. �
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Finally, O’Grady constructed a GIT moduli space MEPW for Lagrangians A Ă
Ź

3V6 with
no decomposable vectors and there is an (extended) period map

℘ : MEPW // D

rAs � // rrYAs,

where D is the period domain already defined in (1.3) (one has to be a bit careful because rYA
acquires singularities when Y ě3

A becomes nonempty). This map is an open embedding (by the
Verbitsky–Markman Torelli theorem, at least when rYA is smooth).

2.2. Gushel–Mukai manifolds and Lagrangians. Recall from Section 1.2 that we can asso-
ciate with any ordinary Gushel–Mukai n-fold X Ă Pp

Ź

2V5q a Lagrangian subspace A Ă
Ź

3V6,
where V6 :“ V5 ‘ CQ is the set of quadrics that contain X and the hyperplane V5 is in the
stratum Y 5´n

AK defined in (2.2).

Corollary 2.5. For each n P t3, 4, 5u, there is a surjective morphism

pn : MGM,ord
n

// MEPW

between moduli spaces. The fiber p´1
n pAq is isomorphic to Y 5´n

AK (modulo automorphisms).

We stick here to the case of ordinary Gushel–Mukai manifolds, but it is easy to include special
Gushel–Mukai manifolds in that statement (just “glue” pn and pn´1).

When n “ 6, one has MGM
6 “MGM,ord

5 , so we can define p6 as p5.

2.3. Comparison of the period maps (even-dimensional case).

Theorem 2.6 (Debarre–Kuznetsov). Let n P t4, 6u. The period map for Gushel–Mukai n-folds
factors as

℘n : MGM
n

pn
Ý // MEPW � � // D .

Sketch of proof. Given a Gushel–Mukai fourfold X, one considers the (3-dimensional) family
F1pXq of lines contained in X and the incidence correspondence

IpXq “ tpx, `q P X ˆ F1pXq | x P `u

p

))

q

uu
X F1pXq.

Under (explicit) generality assumptions on the Lagrangian A associated with X and the Plücker
point pX :“ rV5s P PpV

_
6 q, one proves that F1pXq is smooth, so that there is an induced map

p˚q
˚ : H4pX,Zq //H2pF1pXq,Zq.
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The construction of a relation between F1pXq and rYA goes as follows. For any line ` Ă X,
there is a unique rv`s P PpV5q such that ` lies in the maximal linear space Ppv`^V5q of Grp2, V5q,
hence there is a natural map

F1pXq // PpV5q

` � // rv`s

whose image is contained in YA XPpV5q. This map factors through the canonical double cover
rYA,V5 :“ f´1

A pYA X PpV5qq // YA X PpV5q and the resulting map F1pXq // rYA,V5 is a small
resolution of the threefold rYA,V5 .

So there are maps

(2.3) H2prYA,Zq
„ // H2prYA,V5 ,Zq

� � // H2pF1pXq,Zq.

One shows that the image p˚q˚pH4pX,Zqvanq is contained in the image of the map (2.3) and
that there is an induced morphism

H4pX,Zqvan
//H2prYA,Zqprim.

One next shows that this map is a Hodge isometry for the cup-product on the left and the
form ´q

rYA
on the right: this proves the statement for a general X. But then the result holds

for any smooth X since it holds over a nonempty open subset of MGM
n , which is irreducible.

A similar method is used for Gushel–Mukai sixfolds X, using the scheme F σ2 pXq of so-called
σ-planes (of the type PpV1^ V4q) contained in X. Under the same generality assumptions, one
shows that F σ2 pXq is a P1-fibration over the threefold rYA,V5 Ă

rYA and that both are smooth.
As in the fourfold case, there is an Abel–Jacobi map (the map p is a P2-fibration)

p˚q
˚ : H6pX,Zq //H2pF σ2 pXq,Zq,

maps

H2prYA,Zq
„ // H2prYA,V5 ,Zq

� � // H2pF σ2 pXq,Zq,

and an induced morphism

H6pX,Zqvan
//H2prYA,Zqprim.

Again, one proves that this map is a Hodge isometry for the cup-product on the left and the
form q

rYA
on the right. �

2.4. Comparison of the period maps (odd-dimensional case). In the odd-dimensional
case, one needs to relate the 10-dimensional intermediate Jacobian to some abelian variety
attached to A. The surface Y ě2

A is regular, but the surface rY ě2
A has irregularity 10 and its

Albanese variety will play a crucial role.
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Theorem 2.7 (Debarre–Kuznetsov). Let X be a Gushel–Mukai manifold of dimension n P

t3, 5u with associated Lagrangian A. Assume Y ě3
A “ ∅. There is a canonical isomorphism

JacpXq » AlbprY ě2
A q.

This isomorphism defines a canonical polarization on the Albanese variety AlbprY ě2
A q which is

independent of X, hence a morphism3

alb: MEPW //A10

which factors through the duality involution. The period map for Gushel–Mukai n-folds factors
as

℘n : MGM
n

pn
Ý // MEPW alb

ÝÝ // A10.

We explained at the end of Section 2.1 that the period map for double EPW sextics makesMEPW

into a dense open subset of D . We may therefore view the map alb as a rational map

(2.4) a : D // A10.

Since we know (by the computation of its differential) that the fibers of the map ℘3 all have
dimension 2, the map alb has finite fibers and it has even degree; we expect this degree to be
exactly 2 and the factorization

(2.5) alb: MEPW { duality involution //A10

to be injective (or the induced rational map a : D{rD 99K A10 to be generically injective).
The proofs of Debarre–Kuznetsov are a bit complicated. A simpler (and more natural) way

of proving the theorem when X has dimension 3 would be to use the family C0
2 pXq of conics

contained in X. It was proved by Logachev in the 80s that it is isomorphic to the blow up of
the smooth surface rY ě2

A at one point. This defines an Abel–Jacobi map AlbprY ě2
A q // JacpXq

and one needs to check that it is an isomorphism (this is perhaps not as simple as it looks since
one needs to understand the cohomology of the total space of the family of conics, and this is
not anymore a P1-bundle on the base!).

All the proofs above rely on the construction of appropriate Abel–Jacobi maps. Debarre–
Kuznetsov also give an alternative proof of the result for fivefolds. The incidence correspondence
between the Hilbert scheme of σ-planes F σ2 pXq and X, given by the universal family of σ-planes
in X, induces a map H1pF

σ
2 pXq,Zq

//H5pX,Zq. For X general, the curve F σ2 pXq is smooth
connected (of genus 161) and isomorphic to the hyperplane section rY ě2

A,V5
. Moreover, the map

is surjective, so the induced map between abelian varieties

ϕ : JacprY ě2
A,V5

q // JacpXq

is surjective, with connected kernel.

3This map, a priori defined only on the locus of Lagrangians A such that Y ě3
A “ ∅, actually extends.
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Theorem 2.8 (Debarre–Kuznetsov, Simplicity argument). The morphism ϕ above factors as

JacprY ě2
A,V5

q // // AlbprY ě2
A q

„
Ý // JacpXq.

Sketch of proof. We choose X such that V5 is a very general hyperplane inside V6; in particular,
the curve rY ě2

A,V5
is smooth. The morphism JacprY ě2

A,V5
q // AlbprY ě2

A q is surjective by the Lefschetz
theorem; we call K its (connected) kernel.

Using the very generality assumption, one can prove that K has two simple factors, of
respective dimensions 81 and 70. Since JacpXq has dimension 10, this means that ϕpKq “ 0;
the kernel of ϕ has the same dimension as K and is connected, thus it is equal to K. By
continuity, the result holds for any X. �

This argument cannot be used for threefolds, since in that case the corresponding hyper-
plane V5 is never very general inside V6.

3. Rationality of Gushel–Mukai manifolds

3.1. Dimensions 5 or 6. All Gushel–Mukai manifolds of dimensions 5 or 6 are rational (clas-
sical).

3.2. Dimension 4. The situation in dimension 4 is very similar to that of cubic fourfolds: some
rational examples are known (see below), one expects a very general Gushel–Mukai fourfold to
be irrational, but no irrational examples are known. Since all Gushel–Mukai fourfolds in the
same fiber of the map

p4 : MGM
4

// MEPW

are birationally isomorphic, rationality only depends on the associated Lagragian, or on the
period point in D .

Example 3.1. Gushel–Mukai fourfolds X containing a σ-plane P (a plane in Grp2, V5q of the
form PpV1 ^ V4q) were already studied by Roth (1949) and Prokhorov (1993). They form a
codimension-2 family in the moduli space MGM

4 that dominates via the period map a Heegner
divisor in the period domain D . These Gushel–Mukai fourfolds are all rational.

This can be seen as follows (for X general): let rX //X be the blow-up of P ; the projection
from P induces a birational morphism rX // Y , where Y Ă P5 is a smooth quadric, which is
the blow-up of a smooth degree-9 surface rS Ă Y , itself the blow-up of a smooth degree-10 K3
surface S Ă P6 at one point. Conversely, starting from a general degree-10 K3 surface S Ă P6,
a general point p on S, and a smooth quadric Y containing the projection rS Ă P5 from p, the
linear system of cubics containing rS gives a birational isomorphism Y 99K X, where X is a
Gushel–Mukai fourfold.

The K3 surface S is associated with X in the sense of Hassett: the Hodge structure H2pSqprim

sits in the Hodge structure H4pXqvan (hence also in the Hodge structure H2prYAqprim).
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Example 3.2. Gushel–Mukai fourfolds X containing a ρ-plane P (a plane in Grp2, V5q of the
form Grp2, V3q) were also studied by Roth. They form a codimension-3 family in the moduli
space MGM

4 that dominates via the period map a Heegner divisor in the period domain D .
A general X with this property is birationally isomorphic to a cubic fourfold containing a
smooth cubic surface scroll (those were studied by Hassett–Tschinkel and are not expected to
be rational).

This can be seen as follows (for X general): the projection from P induces a birational
map X „

99KY , where Y Ă P5 is a smooth cubic fourfold. Conversely, a general cubic fourfold
Y Ă P5 containing a smooth cubic scroll contains two families (each parametrized by P2) of
such surfaces. For each such smooth cubic scroll, one can reverse the construction above and
produce a smooth Gushel–Mukai fourfold X containing a ρ-plane.

3.3. Dimension 3. A general Gushel–Mukai threefold X is irrational (it is expected that they
all are). By the Clemens–Griffiths criterion, it is enough to show that JacpXq is not the Jacobian
of a curve for one X (or one degeneration thereof). There are several ways to do that:

‚ When the Gushel–Mukai threefold X acquires a node, JacpXq was shown by Beauville
in his thesis to become a C‹-extension of a 9-dimensional Prym variety associated with a
double étale cover of a plane sextic curve (see Section 4.1). Using Mumford’s description
of the singularities of the theta divisor of a Prym variety, one sees easily that this Prym
variety is not the Jacobian of a curve. This implies that the intermediate Jacobian of a
general (smooth) Gushel–Mukai threefold X is not the Jacobian of a curve, hence X is
irrational (we explain this in more details in Section 4.1).

‚ Using another degeneration (where X remains smooth; see Section 4.2) and results of
Welters and Voisin, one gets another proof of the irrationality of a general Gushel–Mukai
threefold (one shows that the singular locus of the theta divisor of the intermediate
Jacobian of a general Gushel–Mukai threefold has dimension ď 5; see Section 4.2 for
more details).

‚ Debarre and Mongardi found a (smooth) Gushel–Mukai threefold X with a faithful
PSLp2,F11q-action. Then JacpXq also has a faithful PSLp2,F11q-action and this is too
many automorphisms for it to be the Jacobian of a curve. This gives an explicit example
of an irrational Gushel–Mukai threefold.

We will see a bit more about the singular locus of the theta divisor of the 10-dimensional
intermediate Jacobian of a Gushel–Mukai threefold in the next section.

4. Degenerations

Degenerations may be used to relate Gushel–Mukai manifolds (mostly of dimension 3) and
double EPW sextics to situations studied in the past.
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4.1. The nodal degeneration. Recall that the smoothness of a Gushel–Mukai manifold is
equivalent to its associated Lagrangian having no decomposable vectors. Accordingly, when a
Lagrangian A is general with a (single) decomposable vector

Ź

3B, the associated Gushel–Mukai
manifolds (of all dimensions) corresponding to a hyperplane V5 Ă V6 not containing B acquire
an ordinary double point at the point rV5 XBs P Grp2, V5q.

More precisely, given such an A, one can construct a Verra threefold TA Ă PpBqˆPpBKq (a
divisor of type p2, 2q) such that

‚ the discriminant of the conic bundle TA //PpBq is the sextic curve CA :“ Y ě2
A XPpBq;

‚ the discriminant of the conic bundle TA //PpBKq is the sextic curve CAK :“ Y ě2
AK X

PpBKq.

If Y ě3
A and Y ě3

AK are both empty, which we assume, these curves are smooth and TA is smooth.
Moreover,

‚ when rV5s P Y
2
AK r PpBKq, the corresponding Gushel–Mukai threefold is birationally

isomorphic to TA;
‚ when rV5s P Y 1

AK r PpBKq, the corresponding Gushel–Mukai fourfold is birationally
isomorphic to the double cover of PpBqˆPpBKq branched along TA (a Verra fourfold).

The irrationality of Verra fourfolds is still an open question. As to Verra threefolds, their (9-
dimensional) intermediate Jacobians were much studied by Verra through the fact that they
are Prym varieties: if rCA //CA and rCAK

//CAK are the discriminant étale double covers, one
has

JacpTAq » Prymp rCA{CAq » Prymp rCAK{CAKq.

It is expected that these double étale covers are induced by the canonical double étale covers
πA : rY ě2

A
// Y ě2
A and πAK : rY ě2

AK
// Y ě2
AK .

Verra proved that for A general as above, the singular locus of the theta divisor of JacpTAq

has dimension 3 (codimension 6). In particular, JacpTAq is not the Jacobian of a curve. Let BAg

be the boundary divisor parametrizing rank-1 degenerations of principally polarized abelian
varieties of dimension g. There is a morphism ρ : BAg

//Ag´1 and the fiber of a point rpA,Θqs P
Ag´1 is A{AutpA,Θq. One can prove that the image by ρ of the boundary BJg :“ Jg X BAg

of the locus Jg Ă Ag of Jacobians of curves is Jg´1 Ă Ag´1.
Since the intermediate Jacobian of a general Gushel–Mukai nodal threefold is a C‹-extension

of the intermediate Jacobian of a general Verra threefold, which is not in Jg´1, the intermediate
Jacobian of a general Gushel–Mukai threefold X is not the Jacobian of a curve: X is therefore
irrational.

One can probably get more information about the dimension of the singular locus of the
theta divisor of the intermediate Jacobian of a general Gushel–Mukai threefold as follows. Set

N k
g :“ tpA,Θq P Ag | dimpSingpΘqq ě ku.
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Mumford showed that the boundary BN k
g is contained in

(4.1) ρ´1pN k´1
g´1 q Y tppA,Θq, aq P BAg | dimpSingpΘXΘaqq ě ku.

Assume k ě 1 and that a generates A. If an element ppA,Θq, aq of BN k
g belongs to the second

set in (4.1), it can be shown that dimpSingpΘq XΘaq ě k ´ 1. Therefore, pA,Θq P N k´1
g´1 .

The intermediate Jacobian pJ,Θq of a very general Verra threefold is simple and belongs to
N 3

9 r N 4
9 . The extension class a P J defined by the intermediate Jacobian of a general nodal

Gushel–Mukai threefold is known to be nonzero (one certainly expects it to have infinite order
but this does not seem to have been checked).

Proposition 4.1. If a has infinite order, the singular locus of the theta divisor of the interme-
diate Jacobian of a general Gushel–Mukai threefold has dimension ď 4.

In this direction, one could also try to prove that the extension class a does not belong to
the (known) set of extension classes corresponding to rank-1 degenerations of Prym varieties.
This would prove the following conjecture.

Conjecture 4.2. The intermediate Jacobian of a general Gushel–Mukai threefold X is not a
Prym variety. In particular, X is not a conic bundle.

In this nodal degeneration, the limits of the surfaces Y ě2
A and Y ě2

AK are special subvarieties
(in the sense of Beauville) in the Prym variety JacpTAq.

4.2. The Ferretti degeneration. Let S Ă PpV4q be a smooth quartic surface containing no
lines. Ferretti proved that there is a smooth deformation of the surfaces Y ě2

A to the surface
BitpSq Ă Grp2, V4q of bitangent lines to S. It goes roughly as follows: consider the degree-6 map

πS : Sr2s // Grp2, V4q Ă Pp
Ź

2V4q “ P5

that sends a point of Sr2s to the line that it spans. The pullback of the Plücker polarization is
H ´ δ (in standard notation); it has Beauville–Bogomolov square 2 and divisibility 1 so, by the
irreducibility of the corresponding moduli space of polarized hyper-Kähler fourfolds, it must
be a degeneration of double EPW sextics. Actually, it is an actual (degenerate) EPW sextic,
which is 3 times the quadric Grp2, V4q Ă P5. The corresponding Lagrangian is the same for all
quartics S: it is given by A` :“ Sym2 V4 Ă

Ź

3p
Ź

2V4q.
The canonical involution on the double EPW sextic Sr2s is the (Beauville) involution that

sends a subscheme of S of length 2 to the residual intersection with S of the line that it spans.
Its fixed locus is the surface BitpSq, which is therefore a degeneration of surfaces Y ě2

A .
Let W //P3 be the (smooth) double solid branched over S. Welters proved that the variety

F1pW q of lines on W is a connected surface and that the canonical map F1pW q // BitpSq is
a double étale cover which is a smooth deformation of the double covers rY ě2

A
// Y ě2
A (there is

no direct geometric interpretation for that, just the fact that these double covers are associated
with the same element of order 2 in PicpY ě2

A q).
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Welters also showed that the intermediate Jacobian JacpW q has dimension 10 and is iso-
morphic to the Albanese variety of the surface F1pW q. Voisin showed that the singular locus
of the theta divisor of JacpW q has dimension 5, thereby proving that W is irrational (she also
obtained a Torelli theorem for quartic double solids).

The period map for double EPW sextics blows up the (semistable) point rA`s and maps it
onto a Heegner divisor in D usually denoted as D4 (O’Grady). It is the only divisor that is
invariant by the duality involution.

It is not clear which (degenerate) Gushel–Mukai manifolds should be considered as being
associated with the Lagrangian A`, except perhaps in dimension 5. Consider a smooth quadric
Q Ă PpV5q. The variety XQ Ă Grp2, V5q of lines in PpV5q tangent to Q (the tangential quadratic
line complex) is a Gushel–Mukai fivefold, singular along the set of lines contained in Q (that
is, along the orthogonal Grassmannian OGrp2, V5q, which is also the image of the Veronese map
v2 : P3 � � //P9 » Pp

Ź

2V5q). These Gushel–Mukai fivefolds all correspond to the same strictly
semistable point in the GIT moduli space PpH0pGrp2, V5q,OGrp2,V5qp2qqq{{SLpV5q for ordinary
Gushel–Mukai fivefolds and this point should “correspond to” rA`s.

4.3. Iliev’s plan. Iliev has a grand plan that aims at describing the singularities of the theta
divisor of the intermediate Jacobian of a (general) Gushel–Mukai threefold following the method
that Voisin used to do the same with quartic double solids. His aim is to prove a Torelli type
result which amounts to the (generic) injectivity of the map (2.5). More concretely, the singular
locus of a (general) Gushel–Mukai threefold X should more or less be the product of the smooth
surfaces rY ě2

A and rY ě2
AK . It should be noted that it is very difficult to describe the singularities of

a theta divisor when the ambient variety is not a Prym variety: to the best of our knowledge,
the only case where it has been done was in Voisin’s proof of the Torelli theorem for quartic
double solids.

Iliev’s plan goes roughly as follows (almost everything that follows is conjectural).
Let X be a (general) Gushel–Mukai threefold. Recall that the surface rY ě2

A is (the minimal
model of) the surface C0

2 pXq that parametrizes conics contained in X. Let C0
3 pXq be the 3-

dimensional Hilbert scheme of twisted cubics contained inX and let C1
5 pXq be the 5-dimensional

Hilbert scheme of elliptic quintics contained in X, with their Abel–Jacobi maps

AJ2 : C0
2 pXq // JacpXq , AJ3 : C0

3 pXq // JacpXq , AJ5 : C1
5 pXq // JacpXq,

only defined up to translation.

Conjecture 4.3 (Iliev). Let X be a general Gushel–Mukai threefold.

(a) There exists a theta divisor Θ Ă JacpXq such that AJ2pC
0
2 pXqq `AJ3pC

0
3 pXqq Ă Θ.

(b) The image AJ5pC
1
5 pXqq is a surface ZX contained in SingpΘq.4

(c) This surface ZX is isomorphic to AJ2pC
0
2 pXqq »

rY 2
A.

4 Note that a conic and a cubic (both contained in X) that meet in two points define a point of C1
5 pXq.
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(d) When X describes the fiber Y 2
AK of the map p3, the union ZA of all these surfaces ZX

is a 4-dimensional component of SingpΘq with a morphism ZA // rY 2
AK with fibers all

isomorphic to rY 2
A.

(e) The component ZA is the unique 4-dimensional component of SingpΘq.

As in Voisin’s proof, the first step would be to study the sections of the pullbacks by AJ2 of the
various translates of the theta divisor: for a P JacpXq general, one has h0pC0

2 pXq,AJ˚2 Θaq “ 1.
One then establishes a sort of converse to that statement: the translates Θa that contain the
surface AJ2pC

0
2 pXqq are “more or less” those for which h0pC0

2 pXq,AJ˚2 Θaq ą 1. One uses this
criterion to construct a family of translates of AJ2pC

0
2 pXqq contained in Θ (this is item (a)

above).
Next, H0pΘa,Θa|Θaq is a 10-dimensional vector space that defines the Gauss map of Θa and

its base locus is SingpΘaq (it is given by the partial derivatives of an equation of Θa). The
next step is to study, for translates Θa that contain the surface AJ2pC

0
2 pXqq, the image of the

restriction
H0pΘa,Θa|Θaq

//H0pΘa,Θa|AJ2pC0
2 pXqq

q

The base loci of the image corresponds to singular points of Θa contained in AJ2pC
0
2 pXqq or,

equivalently, to singular points of Θ contained in the translate AJ2pC
0
2 pXqq ´ a. This points to

a way of proving item (b) above.
Unfortunately, it seems already very hard to prove even what we just stated.

5. Derived categories of Gushel–Mukai varieties

In this section, we study semiorthogonal decompositions for Gushel–Mukai varieties. We
define the Gushel–Mukai category of a Gushel–Mukai variety X as a particular subcategory
of its derived category. We discuss some properties of Gushel–Mukai categories, culminating
with a duality theorem that relates Gushel–Mukai categories of some pairs of Gushel–Mukai
varieties.

5.1. Introduction to Lefschetz decompositions. Since the main subject of this section
is a particular semiorthogonal decomposition of the derived category of coherent sheaves on
a Gushel–Mukai variety, we need to introduce various notions. First, we fix notation for the
remainder of the section:

‚ for us, all categories are assumed to be triangulated, all functors are assumed to be
derived, and the base field is C;

‚ DbpXq is the bounded derived category of coherent sheaves on X;
‚ a subcategory A Ă DbpXq is called admissible if the embedding functor i : A �

� // DbpXq

has both left and right adjoint functors.

Definition 5.1. A sequence A1, . . . ,An of subcategories is a semiorthogonal decomposition
(abbreviated to SOD) of X if:
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‚ each Ai Ă DbpXq is admissible;
‚ HompAj , Aiq “ 0 for any Aj P Aj , Ai P Ai if j ą i;
‚ tA1, . . . ,Anu generates DbpXq.

We write DbpXq “ xA1, . . . ,Any.

Definition 5.2. Let f : X //PpV q be a morphism. A Lefschetz decomposition of DbpXq is a
semiorthogonal decomposition of DbpXq of the form

DbpXq “ xA0,A1p1q, . . . ,Am´1pm´ 1qy,

where A0 Ą A1 Ą ¨ ¨ ¨ Ą Am´1 is a chain of admissible subcategories and the twist piq is tensor
multiplication by f˚OPpV qpiq.

Fact 5.3. A Lefschetz decomposition is uniquely determined by the first subcategory A0.

Definition 5.4. A Lefschetz decomposition is rectangular if A0 “ ¨ ¨ ¨ “ Am´1.

Example 5.5. The decomposition DbpPnq “ xO,Op1q, . . . ,Opnqy is a rectangular Lefschetz
decomposition with A0 “ ¨ ¨ ¨ “ An “ xOy.

Example 5.6. Let Q Ă Pn`1 be a smooth quadric. For a particular subcategory AQ Ă DbpQq,
which is generated by one or two spinor bundles depending on the parity of n, there exists a
decomposition

DbpQq “ xAQ,Op1q, . . . ,Opnqy.

We can consider this as a Lefschetz decomposition with

A0 “ xAQ,Op1qy , A1 “ ¨ ¨ ¨ “ An´1 “ xOp1qy.

This decomposition is evidently not rectangular, but only because the first component A0 is
larger than A1 by AQ. We will see many decompositions like that in the rest of these notes.

5.2. Reminder on Gushel–Mukai varieties. Recall from Definition 1.2 that an ordinary
Gushel–Mukai variety is a smooth complete intersection

X “ Grp2, V5q XPpW q XQ

of subvarieties of Pp
Ź

2V5q, where W is a linear subspace in
Ź

2V5 and Q is a quadric in PpW q.
Such a variety X can be alternatively described in terms of its Lagrangian data set : a triple

pV6, V5, Aq, where

‚ V5 Ă V6 is a hyperplane;
‚ A Ă

Ź

3V6 is a Lagrangian subspace.

A quick reminder on the connection between those two descriptions: suppose we are given
X, W , Q. The space H0pPpW q,IXp2qq of quadrics in PpW q containing X is V6. The condition
that a quadric contain the larger subvariety Grp2, V5q X PpW q defines a hyperplane V5 Ă V6.



18 P. BERI, O. DEBARRE, D. MATTEI, AND D. PIROZHKOV

The quadric Q Ă PpW q, as an element of V6, is by definition in the complement V6 rV5. So we
get a direct sum decomposition V6 “ V5 ‘CQ as in (1.1), which induces a decomposition

Ź

3V6 “
Ź

3V5 ‘ p
Ź

2V5 bQq.

In terms of Lagrangian data, the space on the left,
Ź

3V6, contains the subspace A. On the
right side, the summand

Ź

2V5 bQ has a subspace W bQ. Those two subspaces are related as
in (1.2).

5.3. Semiorthogonal decomposition for Gushel–Mukai manifolds. A lot is known about
semiorthogonal decompositions of Grassmannians and their linear sections. We will need the
following statement.

Theorem 5.7. Let U be the tautological subbundle on Grp2, V5q. Denote by B the subcategory
xO,U _y Ă DbpGrp2, V5qq. Then,

‚ DbpGrp2, 5qq “ xB, . . . ,Bp4qy is a rectangular Lefschetz decomposition;
‚ if i : M �

� // Grp2, 5q is a smooth linear section of dimension N ě 3, then i˚ induces an
embedding of B Ă DbpGrp2, 5qq into DbpMq, and DbpMq “ xB, . . . ,BpN ´ 2qy is a
rectangular Lefschetz decomposition.

Passing to a quadric section of Grp2, 5q XPpW q complicates things. Instead of a rectangular
Lefschetz decomposition, we get a decomposition where the first component is more complicated
than the others (compare with Example 5.6).

Theorem 5.8. Let X be an ordinary Gushel–Mukai manifold of dimension n ě 3 and let
γ : X // Grp2, V5q be its Gushel map. Then γ˚ induces an embedding of the subcategory B Ă

DbpGrp2, V5qq into DbpXq, and there is a semiorthogonal decomposition

DbpXq “ xAX ,B, . . . ,Bpn´ 3qy,

where AX is the right orthogonal of xB, . . . ,Bpn´ 3qy.

Roughly speaking, this result says that the most interesting part of the derived category DbpXq

is the subcategory AX , with the rest essentially “induced” from DbpGrp2, V5qq.

Definition 5.9. The category AX is called the Gushel–Mukai category of X.

It turns out that for even-dimensional Gushel–Mukai manifolds, the Gushel–Mukai category
behaves in many ways like the derived category of a K3 surface. In particular, it has a “Serre
duality” functor that is the shift by 2, like in the K3 surface case.

Definition 5.10. A Serre functor of a (triangulated) category D is an endofunctor S : D //D

with a natural isomorphism

HomDpF,Gq
„
Ý // HomDpG,SpF qq

_

for each pair of objects F,G P D .
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A Serre functor is uniquely determined by this property, if it exists.

Example 5.11. For any smooth proper variety X, the category DbpXq has a Serre functor
given by Serre duality:

S
DbpXqpF q “ F b ωXrdimpXqs.

In particular, for the derived category of a K3 surface, the Serre functor is just the shift r2s.

On each Gushel–Mukai category, the Serre functor exists and is given as follows.

Theorem 5.12 ([KP1]). Let X be a Gushel–Mukai manifold of dimension n.

(1) If n is even, SAX
» r2s (“noncommutative K3 surface”).

(2) If n is odd, SAX
» σ ˝ r2s for some nontrivial involution σ of AX . If X is a special

Gushel–Mukai manifold, σ is induced from the double cover involution on X.

5.4. Duality of Gushel–Mukai categories. The description of Gushel–Mukai manifolds in
terms of Lagrangian data sets highlights some relations between different Gushel–Mukai mani-
folds.

Definition 5.13. If X and X 1 are Gushel–Mukai manifolds such that for their Lagrangian data
sets, there exist an isomorphism ϕ : V6

„
Ý // pV 16q

_ with ϕpAq “ pA1qK, then X and X 1 are called

‚ dual if dimpXq “ dimpX 1q;
‚ generalized dual if dimpXq ” dimpX 1q pmod 2q.

Duality between Gushel–Mukai manifolds has strong geometric implications.

Theorem 5.14 ([DK5]). If X and X 1 are dual Gushel–Mukai manifolds of dimension ě 3, they
are birationally isomorphic.

Similarly, generalized duality implies a relation between Gushel–Mukai categories. This cat-
egorical generalization was obtained by Kuznetsov and Perry.

Theorem 5.15 ([KP2]). If X and X 1 are generalized dual Gushel–Mukai manifolds, there is
an equivalence of categories AX

„ // AX 1 .

This result is especially interesting because it concerns manifolds of possibly different dimen-
sions. Studying derived categories of higher-dimensional manifolds is usually difficult, so any
kind of a dimensional reduction can be useful.

In the remainder of the section, we will discuss the duality result Theorem 5.15 and sketch a
proof for some particular pairs of dual Gushel–Mukai manifolds.

Remark 5.16. The set of isomorphism classes of generalized duals to X is the quotient
PpV6pXqq{PGLpV6qA, with q P PpV6pXqq corresponding to a generalized dual of dimension
5 ´ dimpkerpqqq. From linear algebra considerations about possible dimensions of kernels, we
see that the duality from Theorem 5.15 predicts that
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‚ if dimpXq “ 6, the category AX is equivalent to the Gushel–Mukai category of a Gushel–
Mukai fourfold;

‚ if dimpXq “ 5, the category AX is equivalent to the Gushel–Mukai category of a Gushel–
Mukai threefold;

‚ if dimpXq “ 4 and there exists q P V6 with dimpkerpqqq “ 3, the category AX is
equivalent to the derived category of a K3 surface.

As a kind of a mix between Theorems 5.14 and 5.15, there is the following conjecture.

Conjecture 5.17. If X is a rational Gushel–Mukai fourfold, the category AX is equivalent to
the derived category of a K3 surface.

5.5. Proof of duality for some Gushel–Mukai fourfolds. The proof of Theorem 5.15
relies on the theory of homological projective duality (often abbreviated as HPD). This theory
is being actively developed and the general proof in [KP2] involves a powerful but quite abstract
machinery. However, for a certain class of Gushel–Mukai fourfolds, the duality statement was
proved earlier in [KP1] using a less advanced version of HPD but relying more on the geometry
of Gushel–Mukai manifolds. In this section, we will give a rough sketch of that argument. We
start with a brief introduction to homological projective duality.

5.5.1. The role of homological projective duality. We begin with a couple of words about homo-
logical projective duality. This theory, introduced in [K1] and later developed much further, is
quite technical. A nice introduction can be found in [K2]. Instead of a rigorous formulation, we
will give an imprecise version with lots of hand-waving. To apply the theory of HPD, we should
know the following three pieces of information:

(1) what does it mean for two varieties to be homologically projectively dual?
(2) which examples are known?
(3) most importantly, what does this condition imply about derived categories?

We will say something about those questions below.
Let X Ă PpV q and Y Ă PpV _q be varieties, both equipped with Lefschetz semiorthogo-

nal decompositions. There is a definition of what it means for X and Y (with the specified
semiorthogonal decompositions) to be homologically projectively dual to each other. Roughly
speaking, it is a certain relation between the derived category of Y and the derived category of
the universal hyperplane section of X. This condition happens to be symmetric in X and Y .
We will not need the precise definition, since we only care about examples.

Specifically, we need only one example: homological projective duality for the Grassman-
nian Grp2, 5q.

Theorem 5.18. The Plücker embeddings Grp2, V5q Ă Pp
Ź

2V5q and Grp2, V _5 q Ă Pp
Ź

2V _5 q are
homologically projectively dual.
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The most important consequence of the homological projective duality between X Ă PpV q

and Y Ă PpV _q is that for any linear subspace L Ă V , the derived categories of the linear
sections X X L and Y X LK have induced semiorthogonal decompositions with a common
nontrivial component, where “nontrivial” means that it does not come from DbpXq nor DbpY q,
in a certain precise sense. Well, that is not quite true: the intersections X X L and Y X LK

should both be of the expected dimensions, and ideally also smooth, but we omit most technical
conditions in this crude introduction. This even works in families: instead of a single linear
section, we may consider the incidence variety for a family of linear sections, with the same
conclusion.

Theorem 5.19 (Main theorem of HPD). Let X Ă PpV q and Y Ă PpV _q be homologically
projectively dual varieties. Let F be a family of linear subspaces of constant dimension in PpV q

parametrized by a smooth and proper variety B. Consider the family FK of their orthogonal
complements considered as linear subspaces in PpV _q, parametrized by the same base B. Con-
sider the incidence varieties

XF :“ tpx, bq | x P X, b P B, x P Fbu Ă X ˆB,

YF K :“ tpy, bq | y P Y, b P B, y P FK
b u Ă Y ˆB.

Then there exist induced semiorthogonal decompositions of DbpXF q and DbpYF Kq with compo-
nents of two types:

(1) pieces “induced” from DbpBq and the Lefschetz decompositions of X and Y ;
(2) a nontrivial component A that is the same for both DbpXF q and DbpYF Kq.

Remark 5.20. Warning: we omit many necessary conditions on, for example, singularities of
linear sections of X, expected dimensions for the intersections, etc. Besides, the words “pieces
induced from” in this statement have no mathematical meaning: the only sensible way to state
the result precisely is to give an explicit description of the semiorthogonal decompositions, which
we avoid.

In Theorem 5.15, we want to show that two different derived categories have a common com-
ponent so, at least superficially, the main theorem of HPD seems to be useful in our situation!
Unfortunately, it is not directly applicable since Gushel–Mukai manifolds are not (families of)
linear sections of Grassmannians.

Remark 5.21. If L Ă V is a linear subspace, PpLq Ă PpV q is HPD to PpLKq Ă PpV _q.
Theorem 5.19 above is a relation between the derived categories of X XPpLq and Y XPpLKq.
In [KP2], a much more general statement was proved: if X,X 1 Ă PpV q are HPD, respectively,
to Y, Y 1 Ă PpV _q then, under some assumptions, the derived categories DbpX X X 1q and
DbpY X Y 1q also have a common nontrivial component. Using this generalization, Kuznetsov
and Perry proved Theorem 5.15 using homological projective duality for Grp2, 5q (Theorem 5.18),
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for linear subspaces, and for quadrics, since Gushel–Mukai manifolds arise as intersections of
those three. We will follow a different strategy.

5.5.2. Dual (generalized) Gushel–Mukai manifolds, geometrically. We recall the construction
of (generalized) dual Gushel–Mukai manifolds. By Definition 5.13, starting from a Lagrangian
data set pV6, V5, Aq, we want to construct a triple pV 16 , V 15 , A1q such that

V 16 » V _6 , A1 “ AK.

We only need to choose a hyperplane V 15 in V _6 to complete the picture. This is the same as a
point in PpV6q, that is, a quadric in PpW q containing the Gushel–Mukai manifold X. Thus, for
any q P PpV6qrPpV5q, we define a dual Gushel–Mukai manifold X_q as the one corresponding
to the Lagrangian data set pV _6 , qK, AKq.

We can now state the theorem proved in [KP1].

Theorem 5.22 ([KP1]). Let X be an ordinary Gushel–Mukai fourfold. For any q P PpV6q r
PpV5q such that dimpkerpqqq “ 3, if X_q is a smooth K3 surface, there exists an equivalence of
categories AX » DbpX_q q.

Remark 5.23. This is a special case of the duality of Theorem 5.15.

Remark 5.24. Not every Gushel–Mukai fourfold has a q as in the theorem. In fact, the set
of Gushel–Mukai fourfolds for which such a q exists is a divisor in the moduli space: in the
notation of Definition 2.1, such a q corresponds to a point of Y 3

A.

An important geometric observation is that if we consider q P PpV6q as in the theorem as a
quadric in PpW q containing X Ă PpW q then, since q R PpV5q, we have X “ Grp2, 5qXPpW qX

tq “ 0u. Building upon this observation, Debarre and Kuznetsov proved the following, even
more explicit description.

Theorem 5.25 ([DK5]). Let X and q be as in Theorem 5.22. There exists an isomorphism
V5pXq » V5pX

_
q q
_ under which the embedding X_q

� � //Pp
Ź

2V5pX
_
q qq is identified with the

intersection
X_q “ Grp2, V _5 q XQ

_,

where Q_ Ă Pp
Ź

2V _5 q is the projective dual to the subvariety tq “ 0u Ă Pp
Ź

2V5q.

The last line needs clarification. Generally, the projective dual to a smooth subvariety of a
projective space is the closure of the set of tangent hyperplanes to it, as a subvariety in the dual
projective space. For example, for a smooth quadric hypersurface in some PpV q, the projective
dual variety in PpV _q is exactly the dual smooth quadric, that is, the one corresponding to
the nondegenerate pairing on V _ induced by the pairing on V . In Theorem 5.22, instead of a
smooth quadric hypersurface, we have a singular quadric defined only on a subspaceW Ă

Ź

2V5.
We will just use the following description as a definition.
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Definition 5.26. Let U be a vector space and let K Ă W Ă U be subspaces. Let q be a
quadratic form on W such that K “ kerpqq. Denote by Q Ă PpUq the image of the quadric
tq “ 0u Ă PpW q under the linear embedding. Then Q is a cone in PpW q over a smooth
quadric Q̄ in the quotient space W {K, with vertex PpKq. Consider the dual chain

0 ĂWK Ă KK Ă U_

of vector spaces. Let Q̄_ be the smooth quadric in the quotient KK{WK » pW {Kq_ dual
to Q̄. Let Q_ be the cone in PpKKq over the quadric Q̄_ in the quotient space KK{WK, with
vertex PpWKq. Then Q Ă PpUq and Q_ Ă PpU_q are projectively dual subvarieties.

Remark 5.27. The proof of this description is basically an exercise in linear algebra. For
example, here is why the dual subvariety should lie in PpKKq Ă PpU_q. Consider a hyper-
plane H Ă PpUq that passes through some smooth point p P Q and contains the tangent space
to Q at p. Since Q is a cone with vertex PpKq Ă PpUq, we see that H necessarily contains the
subspace PpKq. Thus H as a point in PpU_q lies in the subspace PpKKq.

5.5.3. Combining HPD and geometry. In Theorem 5.22, we start with an ordinary Gushel–
Mukai fourfold X. It is an intersection Grp2, V5q XPpW q XQ for some (singular) quadric Q Ă
PpW q. The key idea in the proof is to associate with the quadric Q the family of maximal
isotropic linear subspaces on it. Then, instead of X, we consider the incidence variety

rX “ tpx, Iq | x P X, I Ă Q Ă PpW q maximal isotropic subspaceu.

More precisely, maximal isotropic subspaces on Q form two families, both parametrized by P3,
and we pick only subspaces from one of the families.

The variety rX comes with two projections. The first one, πX : rX //X, forgets the subspace I.
Each point onX lies on aP1-family of maximal isotropic subspaces onQ. Thus the morphism πX
is a P1-fibration. The second map, pX : rX //P3, where P3 is the base of the chosen family of
maximal isotropic subspaces, forgets the point x. The fiber over a point I P P3 is exactly the
intersection X X I, but since I Ă Q, this may be directly described as Grp2, V5qXPpW qX I, so
this is a linear section of the Grassmannian Grp2, 5q.

Denote by Y the dual variety X_q “ Grp2, V _5 q XQ
_ from Theorem 5.25. Using the explicit

description of Q_ in Definition 5.26, we see that Q_ also has two families of maximal isotropic
subspaces, and, moreover, if I Ă

Ź

2V5 is a maximal isotropic subspace on Q, then IK Ă
Ź

2V _5
is a maximal isotropic subspace on Q_.

Thus we can construct rY analogously to rX, as an incidence variety of maximal isotropic
subspaces on Q_, and we have maps

Pp
Ź

2V5q ˆP3 Ą rX
pX
ÝÝ // P3 pYoo Ý rY Ă Pp

Ź

2V _5 q ˆP3.

As mentioned above, both pX and pY are families of linear sections of the Grassmannian Grp2, 5q;
moreover, when considered as families of linear subspaces of Pp

Ź

2V5q and Pp
Ź

2V _5 q, they are
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orthogonal subspaces. This is exactly the situation where we can apply the main theorem of
HPD (Theorem 5.19)!

So we finally get relations between the derived categories Dbp rXq and DbprY q. This is not quite
what we wanted, but now we can gradually improve the things we know.

‚ From Theorem 5.19, we know that Dbp rXq and DbprY q have a common interesting sub-
category; let us call it ĂA .

‚ Since rX is a P1-family over X, the pullback π˚X : DbpXq // Dbp rXq is an embedding of
categories. In particular, if AX Ă DbpXq is the Gushel–Mukai category of X, we can
consider π˚XpAXq as a subcategory of Dbp rXq.

‚ Similarly, DbpY q embeds into DbprY q since πY : rY // Y is also a P1-family.
‚ Thus, in Dbp rXq, we have two subcategories: ĂA from the main theorem of HPD, and
π˚XpAXq arising from a Gushel–Mukai category ofX. In fact, both of those subcategories
are components in some (explicit) semiorthogonal decompositions. After performing a
complicated sequence of mutations (certain procedures that transform a semiorthogonal
decomposition into another one) of those two semiorthogonal decompositions of Dbp rXq,
one can deduce that the subcategories ĂA and π˚XpAXq are equivalent by “lining them
up” inside Dbp rXq.

‚ Similarly, in DbprY q, we have two subcategories: ĂA from the main theorem of HPD,
and a copy of DbpY q pulled back along πY . Similarly, after a sequence of mutations
of semiorthogonal decompositions of DbprY q, one can deduce that ĂA is equivalent to
DbpY q.

‚ Thus eventually we get AX » π˚XpAXq »
ĂA » DbpY q, as claimed in Theorem 5.22.

QED!

The most complicated part of this procedure is figuring out a way to compare two subcat-
egories, rA and π˚XpAXq, of Dbp rXq. This requires a large amount of computations (of Hom

between objects in derived categories).
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